If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=779-16t^2
We move all terms to the left:
0-(779-16t^2)=0
We add all the numbers together, and all the variables
-(779-16t^2)=0
We get rid of parentheses
16t^2-779=0
a = 16; b = 0; c = -779;
Δ = b2-4ac
Δ = 02-4·16·(-779)
Δ = 49856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{49856}=\sqrt{64*779}=\sqrt{64}*\sqrt{779}=8\sqrt{779}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{779}}{2*16}=\frac{0-8\sqrt{779}}{32} =-\frac{8\sqrt{779}}{32} =-\frac{\sqrt{779}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{779}}{2*16}=\frac{0+8\sqrt{779}}{32} =\frac{8\sqrt{779}}{32} =\frac{\sqrt{779}}{4} $
| 2/7+1/5x-1/4=4/5x | | 10=n/3+13 | | 13M=32+5x | | 3y+0.25=3.25 | | 0=-4.45t^2-8t+200 | | 7/3+3m/4=49/12 | | y=(.25)-9+8 | | 1.48x+2.68(100-x)=184 | | 200•x=7500 | | n=11=1 | | (((7-3x)^(1/2))+(3/2)((7-3x)^(-1/2)))/(7-3x)=0 | | 4x-2=21-2x | | x*2-12x=-6 | | 12(3x+3)-7(2x-4)=2x-16 | | -8(3n+9)=14n | | y=(.25)2+8 | | k^2-8k-36=0 | | 7(x-10)=5(x+2 | | 6x-32+2x=-6 | | 7x-(x+4)=2x+8 | | (q/2)+(6/7)=(7q+12/14) | | (b^2-3b)^2-14(b^2-3b)+40=0 | | x-7=5/6(x+3) | | 2/3(6x+9)=-7x+3x | | 4x+7+7x-3=180 | | X2+26x-120=0 | | 64c^2+3=4 | | 20(6^-3t)=15 | | 8x2+7x−1=0 | | 6m/4=-12 | | −(x)^2−18x−79=0 | | -6x+18=7-(4x+9 |